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Abstract

Fritsch and Carlson [3] developed aa algorithm Which produces a monotone C1

pieoviss cubic interpolsant to a monotone function. We show that the

algorithm yields a third-order approzimationo While a modification is

fourth-order accurate.
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1. Istrdetilea.

In addition to being a good approximation to the function, it is

often desirable that an iLterpolant reproduces suok properties as

_aonsegativity° monotonicity. and convexity. In this paper, we analyze

three algorithms which produce monotone C1 pieewise cubic interpolants to

a monotone function.

Since the inte'polaat is a pissvwise cubic, oue would hope that such

an algoritbm would yield a third- or fourtb-••odot 1,6 approximation whenever

the function interpolated is sufficiently smooth. However, if the

algorithm (considered as a map from the set of monotone functions to the

set of monotone C' piecevise cubics) is linear, then it is at best first-

order accurate (see de Door and Swartz [23). Consequently, if greater

accuracy is desired, the algorithm must be nonlinear.

Fritsch and Carlson [3] proposed such an algorithm. Given an initial

C1 piecewise cubic interpolast, they modify the derivative values of that

Lnterpolant (where necessary) to produce a monotone C' piecewise cubic

interpolant. Since the modification process is nonlinear, one might hope

that the Pritsch-Carlson Algorithm Is more than first-order accurate.

In Section 2, we review the Fritsch-Carlson Algorithm and present two

modifieatiens. the Two-Sweep and Extended Two-Sweep Algorithms, which also

produce monotone C1 pieewise cubic interpolants. In Section 3. we prove

that all three algorithms yield third-order L. approximations to a

monotone function. However, in Section 4. we demonstrate that neither the

Fritsch-Carlson Algorithm nor the Two-Sweep Algoritb is a fourth-order

"I;
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method, where. In the case of the latter algorithm, we assume that the

initial approximate derivative values are not fourth-order accurate. On

the other hand, the Extended Two-Sweep Algorithm is a fourth-order method

--if the initial approximate derivative values are third-order accurate.

Finally, some numerical examples are presented in Section S.

For brevity and simplicity. we assume that the fuotion Interpolated

is monotone increasing throughout the remainder of the paper. The

extension to decreasing functions is trivial.

2, Algorithms.

In this section, we review the Fritsoh-Carlson Algorithm and present

two modifications, the Two-Sweep and Extended Two-Sweep Algorithms.

The basis of the Fritscb-Carlson Algorithm is a techaique for

determining whether a cubic polynomial p(x) is monotone on the interval

[xi&X t+1]. Central to this technique is the closed region N (see

Figure 2-11) bounded by the axes and the tupper half' of the ellipse

2 2 (2.1)+ *y +Zy - 6x - 6y+9i 0.(21

1 Also shown in Figure 2-1 are the closed regions h,...j used in the

expression of the algorithms. A segment of the line z + y - 4 forms the
border between the regions A and ]3 and also between the regions D and 3.
The region C is bounded by the limes a 5 S and y - 3.



Pritsch and Carlson [31 show that p(z) is monotone on [r1 zi.+I if and only
2

if (pliSI),p'lz i+)) a Iv2 where

Ii - 119A, h (-AL, li : (Zy) a f

A, [p(xi -- plx l)/I 1  hi x 1 - zl

4.

2.

'Ea

O. 1. 2. 3. 4. 5.

Figu= 2-1: The sonotonicity region I and associated exterior
regions A,.... All regions are closed.

2 We also scale the regions A,...., by Ai and refer to them as

respectively. Hovever, if Ai - 0. we exteid this convention by ta'iat 04
to be the whole first quafdtat; all other regions contract to either poilts
or lines in the obvious way.

S
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Thus. starting vitk a set of function values (f(zi)) and approximate

derivative values (d 1 ). it is easy to determine whether the cubic Iesmite

Lnterpolast of these values is monotone. Moreover, If the initial

interpolant is not monotone, then the eondition on p, indicates how the

values (d J should be modified to make it monotone.

Figure 2-2 presents a three step meta-alloritm3 for finding a

monotone cubic ermite interpolant. Only Step 2 is specified completely.

In Step 1. any technique for computing the initial approximate derivative

values (di) is acceptable, although the acouracy of the initial values is

one of the prime factors in determining the accuracy of the interpolant.

Thre possible implementations of Step 3 are developed in the remainder of

this section.

Step 1: Compute the initial approximate derivative values {di).

Step 2: Ensure that each di is nonneative.

FOR i : 1 I P1 ML a DO
dI :- max(di*S] ;

Step 3: modify (dI) so that *ash ordered pair (di 1 ) 6.

Figure 2-2: Preliminary Algoritku.

Althougk Steps 2 and 3 san be combined easily savin one pass through
the data, considering these two steps separately simplifies the analysis.



If Step 3 torminates. then the algorithm produces a set of

approximate derivative values Which, together With the function values

(f(xi)) determine a monotone cable Uermite interpolaut of f. The

difficulty in implementing Step 3 is that modifying one derivative value di

affects both of the ordered pairs (d lodi ) and (ditd 1.+). Because of the

shape of 5. decreasing the magnitude of di in moving (didj 1 ) into may

force (di-1 d ) out of I-,, and vice versa.

For this reason, Fritsech sad Carlson base their algorithm on a region

3 properly contained in I with the following important property:

If (z~y) s andOj z+ £  and 0 j y , then (a ,y) sS.

The Fritsch-Carlson Algorithm consists of Steps 1 and 2 of the Prelimiaary

Algorithm together with Step 3 as shown in Figure 2-3.

Alternatively. say technique for projecting the points (d1 1di+1 ) into

which is guaranteed to terminate could be used in Step 3. One such

method, the Two-Sweep Algorithm, is shown in Figure 2-4.

On the Forward Sweep, only the second component of each ordered pair

is altered, so that modifying (didi+1) does not affect (d. d J ) for J(i.

Consequently, it is easy to see that (dd ) s 11 u 21 u Ai after the

4 Nor*, stain. we have used the notation I to stand for jj-A i.



-6-

Stop 3: Modify (dI] so that sach ordered pair (diediL+ ) a Re

l3R i :- 1 IEP 1 UTL n-1 DO

IF (died 1 ) d § T3

Compute d+ and d + 1 so that

(a) 0 d +. di.

(b) 0 d d 1 + d+1* and

(C) ,lo +. ) £
S i+1

Figuo 2-3: Stop 3 of the Fritsh-Carlson Algorithm.

Stop 3: Modify (di) so that each ordered pair (di.dt+1 ) 8 ai .

Forward Sweep - modify the second component only.

FOR i : 1 STEP 1 UTIn a-I DO

IF (died 1 )  C i TMIN

"d d 1 :- 3AI;

M.SE IF (diedtL1 ) a i U )L TN4

Decrease d1+1 to project (d Ldi+l) onto the boundary of 110

Backwazd Sweep - modify the first component only.

FOR i : -1 SMP -1 HM" I DO

IF (died L+l) s .u Ii

Decrease di to project (diedi+1) onto the boundary of 1,;

Figure 2-4: Step 3 of the Two-Sweep Algoritm.
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Forward Sweep.

On the Backward Sweep, only the first component of sach ordered pair

is altered, so that modifying (diedL+1 ) does not affect (d ,d j ) for j)i.

Moreover. decreasing the magnitude of dI ensures that the neighboring point

(did1 di) remains in li_ 1 U 1-1 U l-1 • so that (dilodi ) can ba projected

into by decreasing the magnitude of di.1 on the next pass through the

loop. Therefore, after the Backward Swop is completed, (did ) I and

the associated cubic Hermite interpolaut is monotone.

The major short-coming of the Two-Sweep Algoritm is that it may move

a point (di 1  ) much farther than necessary when projecting it into i.

This problem is most acute in the regions A and I close to the points (0,3)

and (3.0). respectively, where the boundary of ] is tangent to the axes

(see Section 4). Therefore, we now consider the Extended Two-Sweep

Algorithm described in Figure 2-5.

If the ordered pair of approximate derivative values (did+1 ) does

not lie in I , then this algorithm allows the magnitude of di to be

increased on the Forward Sweep and the magnitude of di+1 to be increased on

the Backward Sweep. Rovever, the amount by which they can be increased is

constrained by the requirement that, on the Forward Sweep, the preceding

ordered pair (dI_ldi) must remain in /i_l -2 i 1-2 sad, on the

Backward Sweep, (di+11 d1 2) must remain in Ni X" Because of these

constraints, it is clear that (d idi+) a 1. after the two sweeps of the

extended algorithm have been completed. Consequently, the associated cubic

Nernite interpolant is monotone.

-4.
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Step 3: Modify (di) so that each ordered pair (didi+1) a Ir

Forward Sweep - modify the second component only unless the
ordered pair lies in A,.

FOR i :- 1 SI!P 1 NTIL v-1 DO

CASE (diedi 1 ) a C1 :

di+1 :- 3Ai;

CASE (died i+1) a Il:

Decrease di 1 to project (diedi 1 ) onto the boundary of xi;

CASE (diedi+1) i+

Increase di until either

(a) (di d i+) reaches the boundary of A1. or

(b) (di 1 .d ) reaches the boundary of - u U -1

(if i > 1);

IF (died 1 ) i N

Decrease di+1 to project (diedi+1) onto the boundary of i;

Backward Sweep - modify the first component only unless the
ordered pair lies in Xi .

FMRi :- n-2 STEP -1 IMITL 1 DO

CASE (did 1 ) i+

Decrease di to project (di,d1 +1) onto the boundary of Ji;

CASE (died1 +1) s 1:

Increase di 1 until either

(a) (died 1+) reaches the boundary of j1o or

(b) (di+ldi+2 ) reaches the boundary of ]I+ (if I ( n-1);

IF (died+ 1) d I T=

Decrease dI to project (did 1 ) onto the boundary of 1,;

Figure 2-5: Step 3 of the Extended Two-Sweep Algorithm.



3. Third-Order Convergeae,4

In this section, we prove that each of the algorithms presented in

Section 2 yields a third-order L. approximation to a C monotone function,

provided that the initial approximate derivative values are second-order

accurate and, in the case of the Fritsch-Carlson Algorithm, that A is

suitably chosen.

We begin by considering what restrictions on the region P are

necessary for the Fritsch-Carleon Algorithm to be third-order accurate. To

this end, the following result is useful.

1.ma 3.l: If pl(x) and P2 (x) are two polynomials of degree three or

leas that satisfy

Pl(xi) - P2(xi) and pl(xi+l) - p2(xi+l)

then

max i Pl(X) - p2 (x)l : xi M x xl ] (3.1)

-- max ( Ipi:(xi) 'P:(xi)l IPI(xi+i) -I~xi+,)l

Proof: Evaluating

p,(M) - p2 (x) - (x-xi) [ 1 i ] p(x) - " (pi)]

+ (Z-2,.) i [( ) -,i.,

at the points

Y + [h and zi- Xi + [+ ]hi

21
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yields

2 - U k pli+) - P2(Zj+i)]

ad

h
1 ) 2z 6 1~ M p'

respectively. If

IPJI(Zj) - Pj(xj) I . (Z+, --2(ill

then, from (3.2),

h

l i)- P2 (yi) 11 [ + p! I(Z') -;(

21-I~i - P ip(Zi) -(z 4 )

which implies (3.1). On the other hbaud, if

thea (3.1) follows from (3.3).

Waess (1.1) a I (the closure of 1), the Fritsch-Carlson Algoritba is

at best first-order accurate. Coasider the approximation to f(a) - x on a



unifoerm sesh. In this case,

f'(x~ - f'(x1 1 -+ A i W 10 fori1..u.

Consequently, for seeok is one of d4 and d must be bounded away from 1,

and the result follows from Loma 3.1.

Similarly, unless Ic ~,where 7, is the closed triangle with vertices

(0,0),* (2.0),* (0.2). the Pritsek-Carlson Algorithm is at beat second-order

accurate. Assume some point (s.2-s). 0 j 9 ( 1. on the supper half' of the

hypotenuse of I it; not in i and consider th. approximation to f(z) - (z-*) 2

on the interval [s~b]. For any h S. a 2U -s) b-a). choose a set of knots
8 2-s

(z and an integerjasucthat x W a+ iL- and h9h-maZZh) With
ij 2(2-a J

this choice of 2 1 and k,, xj+ 1Sj b.

f'(x) 2Cr -a) f'(x ) (x -&)+2b

A 2(x -a)+h ui 2(z- )+ -2-s

Moreover, A~ 2 hZ - h . Therefore. whem the Fritsch-Carlson Algorithm

terminates, at least one of the approximate derivative values (d1 must

satisfy

Iff(s )-d k

for some constant a > 0. and, by Lane 3.1. the associated cubic Hermits

interpolont is at best second-order accurate. A similar result holds for

the 'lower half' of the hypotenuse of I

On the other hand, if I c ]i. then the Fritsch-Carlson. Algoritka is
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third-order accurate. 5 Before proving this result, we state the following

useful lema.

Lam. 3.2: If f a Cliob] is monotone increasing, thean, for any of

the algorithms described in Section 2,

+ d4J Jf( i 2J =,
di 1 0 and If'(z)i  dI ife(z) - i ml....ou

where dI ad di, respectively, are the approzimate derivative values before

ad after the execution of Stop 2.

Proof: If d is modified in Step 2, then di < 0 and di  0 (see

Figure 2-2). leane, since f'(z ) 0 0,

If'(z i) d - f'(zi)I ( If'(zx) - dii.

On the other hand. if di is not modified, then d + d 0. OJUD.

heorm 3.3: Assume that

1. f a 49[a,b] is monotone increasing;

2. the initial derivative approximations {di } satisfy

If'(z ) - d I I oh2 . i1,...,n,

The four regions ho"."4 considered in [3] all contain the
triangle I.
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for some constant o;

3. Ic 1; and

4. whenever a point (di.d+. ) is projected into Ii the nw point
+1 2

(disdl+1) satisfies

2A d+ +

i.e., the point is not moved 'mush f:t:r' than necessary.

Then the modified approsinste derivative values {d produced by the

Fritsch-Carlson Algorithm satisfy

If'(xz) - d 4 + -lf3)l.]h2o i-l,...,. (3.4)6.

Consequently, the associated monotone cubic Berrite interpolant is a third-

order L approzimation to f.

Prof: Frm Limna 3.2.

d 1 0 and Ift(z) - dtJ £ oh2  (3.5)

at the termination of Step 2.

Assume that di is modified in Step 3 when (d + .idi) is projected to
• +6 4 4.

Cd.i ~-.i di-
d ) a - 6The values d4+ d and d may differ from the

6 +•
dz And di I are approximate derivative values that have boon modified

eitho leone or ltioo, respectively.
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initial values di- 1 and dI satisfying (3.5), but

O _ di id li dii and O d+i di.

If f'lz 1  dip then

4.

01d i - P i)S d -f'(zl ch2.

Therefore. assume that f(z i) 2 di. Note that

2A 1- f(zi_) + f'(zI) if-() A

for some y s [z_ 1,z1. From Assumption 4,

2AiI_ 1 j dl 1 + dip

so that

di f(ii) (f L1 2
f'(x) - dl l_ - f' l 1 (3) 7i-yi J~_1

Therefore,

0 . f'l(z) - di
C 1(3)

d -f'(z t _) + f S (y A 2

1d 6 6i -1 i-i1 (3) 2
di_ - f'(z 1 ) if 9 yt_11 t_ 1

o[+ Of (3)1.]h
2

by Assumption 2.

If d+ is decreased to di to project (di di+1 1 into A on the Rot

pass through the loop, then a similar argument shows that inequality (3.4)

remains valid. QAoD.

.......... 1 .........
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Essentially the same argument shows that the Two-Sweep Algorithm is

third-order accurate. Nowever, the Isteaded Two-Sweep Algorithm say

incroase some approximate derivative values. Therefore. we adopt a

different &ppooh based upon the following leIms.7

m .4: Assme that

1. f a C3[a.b] is monotvwa increasing; and.

2. for some a ) 0. (f'(Uii),fC(z I)) d 1-_ - f'Ai--. where e is the

closed triangle with vertices (0,0). (24,0), (0.2+a).

Then

1-1 .(S) .2

and

f'(zi) + fe(xi [ + j.fl 3i h

Proof: If (f(z....f'(zi)) 6 1* then

(24*)A i 1 ( f,(z i 1 ) + flzt

In passing, note that this lema can also be used to prove a different

version of Thoorom 3.3: if Assumptions 3 and 4 are replaced by

i. Jac I for some a > 0.

then the Fritsoh-Carlson Algorithm is still third-order accurate.
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-A_ f'Czi_.1) + f'lz 1 - ltli 1 (.)

for some - a [a Exl I so that

(.f. (3) 2 f( 3 ) h 2

6 ( )hi-i11 66 -ki-1"

Finally, uing (3.6),

f,(z i 1) f+(z1) ( + 1L]if(S) l ,26 3c," "oi-1"

fs.D.

Theorem 3.5: Assume that

1. f a 0[a,b] is monotone increasing; and

2. the initial derivative approximations (d i  satisfy

If'(x l) - dil h2 . t-1,...,n

for some constant s.

Then the modified approximate derivative values (d:) produoed by either the

Two-woop or the Extended Two-Swop Algorithm satisfy

If'(z 1) - dii I m x(c. 2lf(3) h . .l,...,u. (3.7)

Consequently, the assoeiated monotone subic Neomlte lterpolant is a third-

order L, approzimation to f. [
Proof: By lama 3.2, the approzimate derivative values satisfy

di1 0 and Ifexi) dizI 062
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at the completion of Step 2 of either algorithm. Therefore, they also

satisfy (3.7). Below. we show that. if all the approximate derivative

values satisfy (3.7) when oe is modified is Stop 3. thou the modified

value also satisfies (3.7).* Thus. the theorem follows by Induction.

In the Kneaded Two-Sweep Algorithm. d Iis modified in Step 3 only if

1. (diIdiis projeoted downwards in the Forward Sweep.

2. (did di.~) is projected to the right in the Forward Sweop.

3. Cdia.d ,1) is projected to the left in the Backward Sweep, or

4. (d i- id i is projected upwards In the Backward Sweep.

f For the Two-Sweep Algorithm. only Cases 1 ad 3 are applicable. Therefore.

proving (3.7) for the Extended Two-Sweep Algorithm also shows that this

inequality is valid for the Two-Sweep Algorithm.

Consider Case 1 first: (d I-Id) is projected downwards in the

Forward Sweep. If f'(z i) dig then

0 d +l - fl(M~ 4.d f,(z) matic, Ihf(N.)x 2

since di 4, d. Therefore, assume that f (zi) .1d. If

(f'x~~x) s46 then

f (zi 3A i- i dig

a eontradiction. Thus. Cf '(xi L-).f 'Cxi I 4 .whence
fl(I 9 f,(z~ 11()
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by L ma 3.4. Size f'(zx) di . 0 and both fo(Zi_1) and f'(z 1) are

soanegative,

+

0 .f'(z 1) - dl S. P,(z) S. f(z1 _1) * f,() 5. lf(S5 l 3

Next oaseider Case 1: (didi+ 1) is projected to the rieht ia the

Forward Sweop. If di i fl(l i). then

+
0 PC:1 ) - dl S f*( I ) - d1 . max to, !If 1 3 ).)h 2

sine d1 5 d,. Therefore, assume tkat d; f'(Z). If

(f,(Z ),f'(zi1 j I2' then

A, j ~1 ~1 h
1 .h

by Lma 3.4. Bat d+ S ise (dd so that

0 j ) +. 1'( d A +. j1f~s)h 2 .

./2On the other had, if ('(zi),f'(Zi+1 )) a * thea

51f'C:1i) + f'(z i+1) S A1 S di~i -Pi

since (did+ e a.A implies that SAj S d,1 . Re-arranglag terms,

Ii + PC(z1 ) S. di+1 - (Zl,

U, + f I(Zi  4i+ f'(zi+ )

whence

d 'Z 6 f'(: )
f'z 1 I 61+1 M +

sizes od5 j 1 Therefore.
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0 dl - f'(x i) j di + f'(x i) i+ - t'(zii)

s. ax~o. 2 ifli )k2.

Cases 3 and 4 are handled in a similar manner. .L3.

4. Fourth-Otdor Convrgesse,,

In this section, ve demonstrate that neither the Fritsch-Carison

Algorithm not the Two-Sweep Algorithm is a fourth-order method, where, i

the case of the latter algorithm. we assume that the Initial approximate

derivative values are less than fourth-order accurate. On the other band.

the Extended Tvo-Sweep Al8oritbm is a fourth-order method if the initial

approximate derivative values are third-order accurate.

To see that the Fritsch-Carlson Algorithm is not a foarth-order

method, consider the function f(z) - (Z-1)$ on the interval [0.3]. For any

positive integer a, lot the knots be

z, Mih i - 0.l....3m+2# where h -

A simple computation shows that

4 2 1l 2 s1 A 2
f'(z) - - f'z) h

whence

f1z) f'(zu, (41
A A

is on the boundary of I. On the other hand, any region u used in Step 3 of
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the Fritach-Carlson Algorithm must be contained in the region A, the

square with vertices (0.0) (0,3). (3.3). (3.0), so that the modified

derivative approximation d must satisfy d 's 3A .  Thus,

' - f'x ) - 3Adm I f

and, from Lema 3.1, the Fritsch-Carlson Algorithm yields at best a third-

order approximation to f.

To see that the Two-Sweep Algorithm is not a fourth-order method if

the initial approximate derivative values are less than fourth-order

accurate, once again consider the function f(x) - (x-l) $ on the interval

[0,3]. For 2 j p j 4. choose the knots (xzi suh that, for some J,

x j M 1-1 2 and h = .h - max(h)I Hene,

f'l( = Sh p . f'(zj+1 ) - 3[h2 - 2h +p1 2 + hp],

and

A a J - Sh 1 / 2 + Shp.
j

It is easy to chek that (f'(z),f'(J+l)) is on the boundary between K

and and that (fe(zi),f(Zi+l)) a &,-Ai for i # J. Let d_ a 0 and

di M f'(zI ) for i 0 J. Then d is a pth-order approximation to f'(zx) and

all other di are exact. In addition, since d f(z it follows that

(dodJ+1 ) 8 aillf and (diodt ) a ji1 -A for I 0 J. Consequently, the only

approximate derivative value that is modified by the Two-Sweep Algorithm is
+ sad it Is set to d + SA on the Forward Sweep. Zene,

J+1 J+l

f'(x ) - d+ - 3hp /2 - 6 1 .J+1 J+1I.i
hL __
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and, by Loem 3.1, the Two-Swep Algorithm yields at best an order 242

2

approximation to f. In particular, if the Two-Sweep Algorithm is used to

modify the derivative values of a cubic splun interpolant, then the

resulting monotone C1 piecewise cubic interpolant may be of order 31

rather than 4. since the initial approximate derivative values are only

third-order accurate.

However, for both the Fritach-Carlson and Two-Sweep Algorithms, this

degradation in the order of the approximation arises only under very

special circumstances. If the region 1 associated with the Fritsch-Carlson

Algorithm contains a triangle f4 for some a ) 0. then, USInA an argument

similar to the one employed in the proof of Theorem 4.1. one can show that

the degradation in the order of either of those two algorithms occurs only

in intervals imediately adjacent to an interval containing a root of f' of

exact multiplicity two. Moreover, for the Two-Sweep Algorithm, the

degradation occurs only if, as h -> 0, there are infinitely many grids each

containing an interval [ziz i+ I and a point t in that interval at which P"

has a root of exact multiplicity two and the distance between t and one of

the eandpoints of the interval is less than chi but greater than chi for

all positive constants cl and a2.

Another point about all three algorithms should be emphasized:

whenever h is sufficiently smal, most of the initial derivative

approximations are not changed by any of the algorithms. Thus, if the

initial derivative approximations are third-order accurate, then the

intorpolant produced by any of the algorithms is locally a fourth-order
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approximation on most intervals. Moreover. if the initial interpolant is a

cubic splie, then this additional smoothmess is lost only at the knots

there the derivative values are modified.

To end this section with a convergence result for the Extended Two-

keep Algorithm.

Thoorm 4;1: Assme that

1. f a C4[a.b] iS monotone increasing;

2. whenever f'(x) - f"(z) - f($)(z) - f(4)(z) - 0. there is a 6 0

suck that, if y a [z.x+6)fl [ab], then either

a. f'(y) - 0 or

b. there exist constants '1- ,2' and r such that

=lT-Z)r 1 f'(Y) ' 21T-z)rs

where ti ad r I So*

and, if y a (x-6,z] n [ab], then either

a. f'(y) - 0 or

b. there exist constants n3 m4. and a suck that

3(z-y)
s I f'(Y) ' =4 z-y)g

where .I =4 l0and s 23S and

3. the initial derivative approximations (dI) satisfy
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If'x)- dI[ h ,  ll.,

Then, for h sufficiently mall, the modified approximate derivative values

(d) produced by the Extended Two-Sweep Algorithm satisfy

If,(x 1  d I i h 3 ,  (-,..n 4.1)

where

maz(flf 4 ) w I2 f (4) + LU") (4.2)

Consequently, the associated monotone cubic Hermite interpolant is a

fourth-order L. approximation to f.8

Proof: To prove this result, we combine a comactness argument with

induction. The essence of the proof is outlined below; the details, which

are straightforward but tedious, are in the Appendix.

For each t a [a,b], we choose a 6t > 0 that determines an open

interval I t  (t-stt4t ), where &t depends upon f in a neighborhood of

t. Since fI t  forms an open covering of the compact interval [a,b], there

exists a finite subcovering of [a,b]. Moreover, for h - max(hi)

The proof of this result requires Assumption , although we suspect
that the theorem remains valid for any monotone C'[ab] function. It is
also worth noting that Assumption 2 holds for any piecovise analytic
function.
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sufficiently small. each interval [x _1 ,xi i+ ]  It* one of the intervals of

the suboovering. The proof relies heavily upon exploiting the local

properties of f on each interval of the finite subooveria.

The actual induction hypothesis used is slightly stronger than (4.1):

1. If [x i s 1i+l ] C It@ f'(t) - f"(t) - 0, f(s)(t) # 0, and

t a (x i_,xi], then

If'(x) - di . [1(4)1 + 6.Sc]h3.

2. If [xi-1 1xi+ 1 ] C It a fl(t) - f"(t) - 0, f() (t) # Oan

t a [xx i+) then

-f ~ diiS [f(4 )1 + Mc]hl.

3. Otherwise.

IfIx t) -dii S maxlc. 8If(4)I.h'.

By Loma 3.2.

di 1 0 and If'(xi) - dil j oh

at the termination of Step 2. Consequently, the induction hypothesis Is

satisfied at the beginning of Stop 3. In the Appendix, we show that, if

all the approximate derivative values satisfy the hypothesis when one is

modified in Stop 3, then the modified value also satisfies the hypothesis.

Thus, the theorem follows by induction. 0,3.D.
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5. Nuerisl Results.

In this section, We compare the piecewise cubic interpolants produced

V by CUBSPL [1] the Fritsch-Carlson Algorithm, and the Extended Two-Sweep

Algorithm for the two sets of monotone data given in Section 5 of [3].

In the case of CUBSPL. we used the 'not-a-knot' boundary conditions

to complete the specification of the cubic splue interpolant. Sines

CUBSPL is based upon a fourth-order linear algorithm, it does not, in

general, produce a monotone approximation to a set of monotone data.

We implemented the Fritsch-Carlson Algorithm described in [3] and,

following their suggestion, we took the region I required in Step 3 to be

the intersection of the disk of radius three centered at the origin

With the first quadrant. The results in Sections 3 and 4 above show that

this method is third-order, but not fourth-order, accurate.

Te used the derivative of the cubic spline interpolant produced by

CUDSPL for the initial derivative approziszions required in Step 1 of the

Extended Two-Sweep Algorithm. Since these approximate derivative values

are third-order accurate, the monotone interpolant produced by the Extended

Two-Sweep Algorithm is fourth-order accurate.

Figure 5-1 shows the intorpolants produced by CUBSPL and the Extended

Tvo-Sweep Algorithm for the first data set AKINA 3) in [3]. Figure 5-2

shows the interpolants produced by the Fritseh-Carlson Algorithm and the

Extended Two-Sweep Algorithm for the same data set. Figures 5-3 and 5-4

show the interpolants generated by the same two pairs of methods, but for

jr
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the second data set (RPN 14) in [3].

The interpolant produced by CUBSL is clearly not monotone for either

data set and does not yield a 'visually pleasing' approximation in either

ease.

For the first data set, the interpolants produced by the Fritsch-

Carlson and Extended Two-Sweep Algorithms differ significantly on the

interval [11,15]. Because the Extended Two-Sweep Algorithm projects

approximate derivative values onto the boundary of N, it produces an

interpolant with a zero slope in this Interval. This is not the case for

the Fritsch-Carlson Algorithm, since it projects approximate derivative

values into the interior of K. We leave the subjective question of which

approximatioa is visually more pleasing, to the reader.

For the second data set, the iaterpolants produced by the Fritsch-

Carlson and Extended Two-Sweep Algorithms are virtually indistinguishable

at the resolution of these plots: monotonicity imposes a severe constraint

in this example.

"4
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AffeadLz

U). Proof of Thoorm +,4,

In this appendix, we complete the proof of Thoorem 4.1. To begin. we

state and prove two useful lIas.

Lema 5-.1: If f s C4 [a.b] and fO(t) f V"(t) = 0 but f(S) (t) i 0 for

some t 6 [xi°Z1+l], thes

B2

If(xi) - A'j A . j -If'nz4)y i  (5.1)
1-3y+3y 2

and

A( ) - jf4l l(_)2, (5.2)
i+1 1-3y+Iy 2  .2

where - (t-zi)/hi. Moreover, the locus of points

22
(0 v) ( ) o 1 (5.3)

1-3y+gy 1ST+y

is the elliptical bomdary of I.

Proof: Inequalities (5.1) and (5.2) follow from the Taylor series

expansions

f'(z,)- 1($)(t),2 h -1(4) ( 3

A i -. ('() 3(1 3 2]k + -144f(4 , (y3)(ly)4-f
(4 ) (y4)T4] 3.

6 6 )k-1 24hki

for some y, y2 v yrs 74 a [zi.x+l]. The validity of (5.3) is established
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easily from (2.1). Q,.D.

Lema S.: Assume that

1. f a C4[a.b] is mosntoa lnreasiag;

2. f'(t) - f"(t) - 0 but f() Mt)L 0 for some t a [z£ #Zi~l] ;

3. (d6vd +1 ) a ; and

4. the ilitial derivative approximations satisfy

f'(z i) j di and If.(z 12) - di+1j oI 3

for some constant o.

Then, for the unique d such that (di di) a In A ,,

If -(z d1.1 I = af. j-2f(4)1.)h. (5.4)

A similar result holds for (d,,d 14 ) a Ki.

Proof: Throughout this proof. we use inequalities (5.1) and (5.2) of

Lema 5.1 without explicit zefereno.

Consider two oases depending upon whether d ) f'(z ).
1+1+

Case 1: If di 1 ) f'(xt1 l). then

0 ( dl+ - f'(z 1 +1) j 6+1 t (z1 +1) d f

since 61+1 d d++i,



- 34 -

Case 2: if di+f f'(zi+). then consider two suboases depending

upon whether

3'2
2_T32 At i di .

1.1

1-37+3y2

Case 2.1: If (5.5) is valid, then

3 1 - ) 2 A i  d d + ( S *.6)

since the segment of the cure (5.3) that forms the boudary between Ji and

A, is an increasing function of y in both the z and y co-ordinates.

Consequent ly,

0 1 f'(xi 1  d d+ 1  f'(z 3+1  --Y 2 Ai  f 4f(4) 1 h

Case 22: If (5.5) is not valid, then (onsider two s5b.ases

depending upon whether y > 1

Case 2.2.1: If T > 1. then

3.2

1-3$+372
1

This bound together with the observation that di  A (sinoce

(d .,+ 1) a A) shows that

1~ J 12 A- di  3! 2" A I ('z1  Al Me" 14 2Tk 3

1-l-+ 3 y2  1 1-ST+f 2  4

In addition,

-7b ) _728l

3A, S d+ 1 £ f'(z 1,1) S. 4 + -.jf(4)j (1-y) h

whee,
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0 j f (z d --71f( 4 ) 1 h 3

Case 2.2.2: Alternatively. if 0 y 5 . thea there exists a uique

a [0.71 such that

U 2
dw 2A 1  

(5.7)

sise, by assmption,

S2
0 'j d i  1 - A i

and the right side of this iaequality is a strictly imreasing function of

-for 0 my •loreover, since (di d ) a Ki n Ai.

i+ 1-3+3 i

by (5.s). Therefore,

0 f '(x~L 1  - d+ 1  
58

- fe(z 1 ) - 2 Ai  L A- Ai

1-3.+3yt 1-sy+ST2 1-3+3

5.1f(4), hl + ( i

since. for 0 i , S. I S '

0 j 3.U1--) 2. - SLkL1L 2 (y)
1-3y+32 1-$ +, 2

To bound 9(y-A)A1 note that, for 0 T 5y .j and f'(z) - di 0.
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o j 37(7 - )Ai j 3(y2 - ) i

0 1 2 V, 2

SV Ai -

1-37+3Y 1-34+3t2
2

1. 3 i- f(xi) + f'(zi) - diI - Y 2  1

:24f4 n2.

whence

oe 9(y - t)Ai - ( If 4 U.hs.

Combining this with (5.8), we get that

0 1 f'(xi 1  d+ 1 . j

ZEW 91 htg= §:4-: As stated in Section 4, we combine a

oompactness argument with induction to proof this result.

For each point t e [a.b], we choose a &t > 0 that determines an open

interval It - (t-4tt+bt). Since (I t ) forms an open covering of the

compact Interval [atb]. there exists a finite suboovoring of [a.b].

Noreover, for h - naxhi) sufficiently mall, ch interval

zt+ 1 ] 1 Its one of the intervals of the subooverins. The proof

relies heavily upon exploiting the looal properties of f on each interval

of the finite subeovering.

In choosing 6t. we consider four cases.



- 37 -

1. If fP(t) 0 0, then choose 6t > 0 such that

0 ( f'(x) < 3f'(y)

for all , y a I t n [a.b].

2. If f'(t) - 0 but f'(t) # 0, then choose t > 0 such that

0 ( f"(x) ( 1.$f"(y)

for all 1. y a I t n [a.b].

ttS. If fl(t) = VIMt - 0 but f(3)(t M O,0 then choose 6 t > 0 such that

0 < f(3)(x) < 1.lf ( 3 ) (y)

for all . 7 g I t n [ab].

(3)4. If f'(t) - f'(t) - f()t) 0. then choose 6t such that, for all

y a [t~t+ t) fl [ab]. either

a. fl(y) = 0 or

b. for some constants n%, 82, and t,

a,(7-0 r f (Y) . (-t) r .

where La !L aada23
1 ,10an 13

and, for all y 6 (t-t,tJ n [a,b], either

a. fo(y) - 0 or

b. for some oonstants 230 34 ° ad to

s3(-7) f'(7) .i 84(t-7)8'
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where a" S a I S .

.It Is possible to choose & to satisfy Cases 1-3 because the first threet
derivatives of f are continuous. If f(4 )(t) # 0. then Case 4 follows from

the continuity of f(4) Otherwise, it follows directly from Assumption 2

of Theorem 4.1.

To prove that the induction hypothesis (stated in the abbreviated

proof of Theorem 4.1 in Section 4) remains valid when an approximate

derivative value d i is modified in Stop 3 of the Extended Two-Sweep

Algorithm, we consider a number of oases depending upon the properties of f

at t. where [x i z i+1 ] € I st i the interval under consideration. We prove

tt
the last case in the induction hypothesis first.

Case 1: Assume that [ziIxi+1] 3 I t and f'(t) 0 0.

Case 1.1: Assume that (di L.d ) U Ri U k- ad diis

decreased to d' on the Forward Sweep. Henes. di I. di 2. SA 1 . Since

A iI- fl(y) for some y a [ai i Ji it follows from the choice of It that

f'(xi) S 3Ai-1 0 Therefore,

0 1 d_+ ,(xi) S di - f,(xi) ch3.

Case 1.2: Assume that (diedi+i) a A and di is increased to di on

the Forward Sweep. If d, S f'(zi). then

01f(z) - l dI  f'(z) - diS. oh.

On the other hand, if dl f(x) then
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0 5 d - di .

To bound di, Sote that fe(z i+) 3A1 by the ohoioe of It  Therefore.

3
SA I 5.di+1 i5 i oh .

This inequality together with the observation that the curve x - (y-3) 2 is

contained in I for $ j y1 4. shows that di j (h) sinca (di£d+ ) a v
Doug*, for k sufficiently small,

Jf~li) -di, o 3

Case 1.3: Sine fV(U 1 ) 3Ai 1 and f'( ) I M $A, a similar

argument shows that

Ifou•) - dil S oh$

after the Backward Sweep.

Case 2: Assume that [xi ,lXi+1] J It and fl(t) 0 0, but f'(t) 0 0.

(In this cases t must be one of the endpoints of the interval [a,b], since

otherwise f would not be monotone.) As in Case 1. the choice of It ensures

that

felzi-i) S. SMI-1 " fsl) 5. 3A 1 .

f'(Z) 5 3A' ft'zi i) ± SA.

Therefore, a similar argument shows that

if(z) _ di 5 oh
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at the termination of Stop 3 In this case as well.

Case 3: Assume that [Ilox i 1 I Its f'(t) - f"(t) = 0.

f(3)(t) 0 0 and xi I  i t o

Case 3.1: Assume that (d1I- I ) a £ - B u U- and di is

decreased to di . From the choice of It & it follows that f"(x) ( 0 for

3 a It and z ( t. Therefore, f'(: I) AA. 1 Hence, as in Case 1.1,

0 j d- f'(xz) di fe() j oh

Case 3.2: Assume that (di i 1 ) a A, and di is increased tod i .

Again, since f"(z) < 0 for z a It and z C t, it follows that

f'(3i+1 ) j Ai. Consequently, the argument used in Case 1.2 shows that, for

h sufficiently small,

If'(z - 41h1 j oh

in this case as well.

Case 3.3: Assume that (died +1  a u A and d is decreased to di.

If f'(zi) £ d+. then

0 d+ - f'(z i) x di - ft() j oh3.

Therefore, assume that f'(x) ) di. and lot T - (t-xi )Ihi - Since

A1  a fJ(z) for some z a [z Ii1, I and fVz) j 1.lf(y) for all a. y a It.

it follows frn the Taylor series expansions of f(i) and f"(s) about t

that

V(zi)/A1 - () z I-t)2 /f (y)(cz-t) 2 1.1(7+l)1/2.
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Consequently, if y I 1/e-1), where &-2 the, ( )  Ai , a

contradiction. Therefore, 0 j y I 1/(w-). A simple calculation, similar

to the one used in the proof of Lems 5.1. shows that

SA1  6 + f'(z) £ SAi + 61f l h3,

whence

0 z .d f+6i). th

in asordane with the indution hypothesis.

Case 1 .4: Assume that (d i-ld 1 a a,-, ad di is inreased to di

if di  f '(zi)i then

f'(z ) d fe(zi d * f'(t) - It ) .

On the other had, if d + f(z ) v, then an argument sililar to the one used
In Case 3.3 together with the Induction hypothesis shows that

ft.1 J 3.Aj_l + 6l£1f h i 3 -

where Is given In (4.2). Therefore, since y - Ux-4)2 is contained in I

fez sa (d_lvdi) a A,-,. it follows that

d f (1i I di I (6|f(4D.+ ;)h6

vbioh, for k sufficiently swill, satisfies the induction hypothesis.

Case 4: Ass=*e that E i_1,zi+ I] C I t @ f(t) - VIMt = 0,

f (3)(t) 0 0 sad t a,-,*1 An arSj=ezt similar to the one ued'in Case S
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shows that the iadation hypothesis holds is this ease as well.

Case 5: Assume that Ex 1-1 c +1 1 CI, fl(t) - f"(t) - f (3)(t) - 0

and zi+1 i t. In this ease. either fI(y) - 0 for all y 'j t in It o  fl(y)

satisfies the bound in Condition 4b on It * If f'(y) - 0. then both Ai-1

and Ai are zero. Henoe, if di 0O, then (dt_lodi) a l-1 ad di is set to

zero on the Forward Swoop of the Extended Two-Sweep Algorithm.

Furthermore. since dI is not modified again. di = f'(z I) - 0 at the

termination of the Step 3. Therefore, assume that f'(y) satisfies the

bound in Condition 4b on It throughout the remainder of this ease.

Case 5.1: Assume that (d_1 .da) Ai-, U li-l u%-I and di is

decreased to dl. Thea. since A_ 1  fe(y) for some y a [a 1i loz i ]  it

follows from Condition 4b on I that

f'(Z )/Al_ !tz~/(-~ 1.1.

Therefore. sinee d1 I di . 3A_l

0 j d+ - f £ d1 - f'(Z) O ehl.

+

Case 5.2: Assume that (d1,dt+l) a * and di is Increased to d,. An

argument similar to the one above shows that fVz+ 1) i+ 1.h 1A.

Consequently, as in Case 1.2.

If'(z1) - dli I eh

for h saffieLently mall.

Case 5.3: Assume that (d1 d i+1) a Riu 1i and dI is decreased to di.
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Banoe. if f'(x i) I di. then

o id i - l(z1) d - f'(z) £oh .

Therefore, &as=e that f'(z) > d w + heae

S1 f(zi) - di f (x/)

To bond f'(x ). let y (t-i+l)/hi . Then, since - f'(z) for some

z a [zi#Zt ]
1+1

f'(zi)/A 1 1 4(zi-t)$/mN(z-t)s 5 l.l(y+l)s/y8

by Condition 4b. Consequently, if y1 11(r-1), where * - U. then
11'

f'(z i) I SA i 5 di , a contradiction. Therefore. 0 jy Biee-). onee, if

a ) 3, then f(z I) - o(kh), and the induction hypothesis holds for h

suffioiently mall. On the other hand, if a 3, then expanding f'( ) as

a Taylor series about t shows that

f'(,i) - f (4) 3 j 8et(4)1,3

as required.

Case 5.4: Assume that (d 1-1d 1 ) a li-1 and di is increased to di.

Then, if di 5. f'(zi),

o ,f'(z) - di < f'(z) - di .a .-, $a4nIf o)h'.

On the other hand, if di + f'(zi). let 7 - (t-zi)/hii. Thea, an argument

similar to the one above together vith the induction hypothesis shows that

dIl 3 SAjl + k



for T 1/(-1). where us  B es, we agaia have that

0 d - f'(z i )Y d+ (Zk) 2 .

Conversely, if 0 Y I 1i/C-1), thean, for a > 3.

Ail s f'(Z) 5m 4 (t-z) Ua4 (yl)Shk - O(lkh),

vwile, for a - 3.

4-_ I 1  f'(z) if (y)(z-t) $ 5 81f( 4 )I b

In either ease,

0 1 d +- f'Cz) d + 1 4 ) 0 3
I I A~ I Ii 4

for h sufficiently small.

Case 6: Assume that [a C I f (t) 0

ad t 5 z_ 1 . A similar argumeat to the one ued in Case 5 shows that the

induction hypothesis holds Ia this ease as yell.

Case 7: Assume that [z i_ zi+I  I t* f'(t) f"(t)- f (3(t) - 0

and t a (zi_1zi 1). The proof of the Induction hypothesis follows easily

from the observation that fe(zI), Ai_ sad A are each bounded by

This completes the proof of the third ease of the induwtion

hypothesis. We now onsider the first two eases.

Case 8: Assume that Exzt 3J 1] I I a t - 't"(t) - o.

.,
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f($)(t) # 0 sad t a (zx aDZi]. First note that, for h sufficiently small.

[z 1 2 .z I ] C t . gone*, an argument similar to the one presented in

;Case 3.1 shows that f'(z ii) . A12' from which it follows that, if

i_2.di_ ) 8 U-2 V ]i-2 U Fi-2' then

0 1 d i ( ) - f'(z_ i oh.

Consequently, di-_ satisfies (3.5) at the start of the Forward Sweep for

die

Case 8.1.1: Assume that (dt i-d1 ) a A,-. Note that di is decreased

to d+ only if d has been Increased to d s+ and either

1. (d_ 2 ,d+ 1 ) is on the boundary of U o U 1 i-2" or

2. (di1, di) is on the boundary between ad -

In the first case, di_1 I Ai_2 . But, as previously mentioned,

f'(i-1) j Ai -2* whence f'(x 1 1 ) L1 d+1-1. Therefore, by [ama 5.2,

Ife~z d+1 next@, .AZf(4), k

On the other hand, If (d1 9 d1) is on the boundary between A-1 and Bt.

then the following case applies after noting that (dil.di) is closer to

the boundary of than (d 1 -lodI) was.

Case 8.1.2: Assume that (d i1 1 d ) a u 9-1 and dI is decreased

to d+. A simple calculation shows that the wertisal distanes from

(di-lod I ) to the boundary of - u f-1 is less than or equal to 2.75

times the sinimmu distance from (dt ldi ) to the boundary of 1" From

inequalities (5.1), (5.2) and the error bounds on d _1 and die it follows

.... it.follow



that the distance from (di_,.di) to the boundary of i-, is less thean or

equal to

(2c + 4.:rf4 e.)h .

Consequ(ntly,

I, - dKi(6.5c d Iif1 4 )I.)h 3 .

Case 3.2: Assume thtt (dihdi+1 ) a A and that d, is increased to d,.

if ds f'(zi then we ain have thst

i f'l (I) - di o f'z i ) - di  (6.5@ + o h .

On the other hand, If d . (z then

0 j d - ( di-

Beise t a (zil the an arsumont similar to the one prsentd in Case 3.2

shows that

d1+1 I f'(zi~l) + Ch)  J AI + 61f(4jOh3 + h3

ad

d 6fW +C) 2k6,

which omplete& the analysis of this ease.

Case 8.3: Assume thsat (diodt+1 ) a I U Il and that di is decreased

to d,, Therefore, d d, S .A, . Elowever, sine. t a (z .i1oi)

f(zI) jA. lases,
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o . ,d - t, chd . d - f, Czu .(,.So.e fIf 4 n.)h3.

Case 8.4: Assume that (di-1 .d) a 4-1 mad that dI is increased to

di e if di i f'(zt). tha

o 1 (z1) - dI (a f ,(z) _ di (6.sc + nf(4)l)h3.
6

Therefore, assume that di fe(z i ). is addition, Soto that, if

(d i-1 dI) a &-_, then we could not have had (d -lad/) a A1, on the

Forward Sweep. Therefore, the bound

Id i11 - f'(z 11 )l S oh3

established at the beginniag of Case g still holds. Moreover. szes the

slope of the ouve that forms the boundary between i and is less than or

equal to one,

0 d1 - ft'( () + C .

Case 9: Assume that [sC +1] C It& fl(t) - f"(t) - 0.

f(3)(t) 0 0 sad t a s [zii).

Case 9.1: Assume that (di-;.dI) a A-l Ci e. a, d di is
decreased to di. Therefore, dI di  3A 1_. Ioweyer, f (zr) A i.A by

the choice of It . Bn.,

o j d+ - f'(z) £di - t*(zt) S ok.

Case 9.2: Assume that (divdi+l) a 41 sad dI is inreased to di. If

di L f z (
) , then

05 f'(z1) - d + f( - di 5 oh 3
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Therefore. assume that d; ? f(z 1 ). Note that the Inverse of the slope of

the curve that forms the boudary between I and is less than or equal to

Tone. Therefore. as in Case 8.4.

0 ' d+ -f (a (c+ -hf(4) k3

Case 9.3: Assume that (dd,1 ) S in I i nce dI 2 3i, d1 could

not have been modified in Case 9.2. eo, d1 must still satisfy (3.5).

'IIConsider the following two suboasss.

Case 9.3.1: Assume that (di id1 ) a 1,. Note that di is decreased

to d+ only if d was increased to d + and either

1. (d+, dt+2 ) is on the boundary of lj+l or

2. (di.d il) is on the boundary between , and Zi

In the first ease. d,+, I A,+,. In addition. f'(z 1 +) S Ai+I by the choice

of It . Therefore. f'Cz1 +I) S d 1 and

Ife(z)- d I j max(o . .f()

12.

by Lema 5.2. On the other hand. if (d 1 *d 1*) is on the boundary between

n, and J.. then the following case applies after noting that (di.di+ ) is

closer to the boundary of N, than (d,.d+ 1 ) was.

Case 9.3.2: Assume that (di ,d+ 1 ) a and that d, is decreased to

.d i . As in Case 8.1.2. note that the horizontal distanee from (dIdi+1) to

the boundary of Ili Is less than or equal to 2.75 times the minimum distaee

from (di,d0 1 ) to the boundary of I . oreover. inequalities (5.1), (5.2)

and the induction hypothesis on the error in di+ 1 imply that the distanes
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from (died .+) to the boundary of i is less than or equal to

(7.5. + !If( 4 )I)h1.

.Consequently,

d+~ )i(4 I- R

++
'";Case 9.4: Assume that ad~~i  a - n8rd di is increased to .

If di f(/,then ve again have that

0f'(z) d i f'(x1  d ~ f. ( (4 )3 + LU1C) h

On the other hanad, if d; f'(zi). then

0 j d; - f'(z l ) £ d+ (6lf(4)U1 + maz(Cs)nf 4Ml.))2h6 o

vhick follows from an argment simllar to the one used in Case 3.4 after

noting that

d4_1 £ SAl + (63f(4 )l + mazc,8)If 4)l.)h s .


